import numpy as np
= np.sqrt((2/6.6)**3)
ratio print(f'最小值为 {24 * ratio} h')
最小值为 4.003504600459493 h
黄轶凡
March 16, 2024
\begin{cases} G\frac{Mm}{R^{2}}=m\left( \frac{2\pi}{T} \right)^{2}R\\ M=\rho V \end{cases} \Rightarrow \begin{cases} T^{2}=4\pi^{2}\frac{R^{3}}{GM} \\ M=\rho\frac{4\pi}{3}R^{3} \end{cases}
\Rightarrow T^{2} \rho\frac{4\pi}{3}R^{3} = \frac{4\pi^{2}R^{3}}{G} \Rightarrow T^{2}\rho=\frac{3\pi}{G}
地球半径 R,原同步轨道半径记为 r_{0}=6.6R.
分析几何关系,得临界情况下同步轨道半径 r_{1}=2R
由 T=2\pi \sqrt{ \frac{r^{3}}{GM} } 得 \frac{T_{1}}{T_{0}}=\sqrt{ \left( \frac{r_{1}}{r_{0}} \right)^{3} }
两环绕体从相距最近开始运动到再次相距最近,转得快的正好比转得慢的多转了一圈,即 \frac{t}{T_{\text{earth}}}-\frac{t}{T_{\text{other}}}=1 \Rightarrow t=\frac{T_{\text{earth}}}{1-\frac{T_{\text{earth}}}{T_{\text{other}}}}
\frac{T_{\text{earth}}}{T_{\text{jupiter}}}=\sqrt{ \left( \frac{r_{\text{earth}}}{r_{\text{jupiter}}} \right)^{3} }